A coloring problem on the n-cube

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainbow coloring the cube

R. J. Faudree DEPARTMENT OF MATHEMATICAL SCIENCES MEMPHIS STATE UNIVERSITY MEMPHIS, TENNESSEE A. Gyarfas COMPUTER AND AUTOMATION INSTITUTE HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, HUNGARY L. Lesniak DEPARTMENT OF MATH AND COMPUTER SCIENCE DREW UNIVERSITY MADISON, NEW JERSEY R. H. Schelp DEPARTMENT OF MATHEMATICAL SCIENCES MEMPHIS STATE UNIVERSITY MEMPHIS, TENNESSEE We prove that for d ~ 4, d * 5...

متن کامل

A new Simulated Annealing algorithm for the robust coloring problem

The Robust Coloring Problem (RCP) is a generalization of the well-known Graph Coloring Problem where we seek for a solution that remains valid when extra edges are added. The RCP is used in scheduling of events with possible last-minute changes and study frequency assignments of the electromagnetic spectrum. This problem has been proved as NP-hard and in instances larger than 30 vertices, meta-...

متن کامل

Derangements on the n-cube

Chen, W.Y.C. and R.P. Stanley, Derangements on the n-cube, Discrete Mathematics 115 (1993) 65-15. Let Q. be the n-dimensional cube represented by a graph whose vertices are sequences of O’s and l’s of length n, where two vertices are adjacent if and only if they differ only at one position. A k-dimensional subcube or a k-face of Q. is a subgraph of Q. spanned by all the vertices u1 u2 u, with c...

متن کامل

On a list-coloring problem

We study the function f G de ned for a graph G as the smallest integer k such that the join ofG with a stable set of size k is not jV G j choosable This function was introduced recently in order to describe extremal graphs for a list coloring version of a famous inequality due to Nordhaus and Gaddum Some bounds and some exact values for f G are determined

متن کامل

On the General Coloring Problem

Generalizing relational structures and formal languages to structures whose relations are evaluated by elements of a lattice, we show that such structure classes form a Heyting algebra if and only if the evaluation lattice is a Heyting algebra. Hence various new and some older results obtained for Heyting algebras can be applied to such structure classes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2000

ISSN: 0166-218X

DOI: 10.1016/s0166-218x(99)00249-8